| | | | | | Tab | ole 6 -1. | Alternat | ives Ma | trix | | | | | | |---|--|---|--|--|-------------------------------------|--------------------------------|---------------------|---------------------|---|--|---|---|--|--| | B2 Orifice Improvemen | ts · | - Alternatives Matrix (17 A | uaust : | 2011 FFD | RWG com | nments inc | cluded in re | ed) | | | | | | | | , , , , , , , , , , , , , , , , , , , | | • | | | | | | , | 1 | ı | T | | Additional | | | | We | ighting Factors - Used on Top 5 of Initial | Scores
= | 3 | 2.5 | 2 | 1 | 1 | 1 | 1 | | Top 6 Alternatives | Rated Item -
Weighting = 1 | Top 3 Alternatives | | | , | Alternatives | | Rated Item | | Rated Item | | | Concept | No. | Description | Orifice
Ring Size | Observable
Passage Route | Fish Condition
With Modification | Alignment With
DSM Criteria | Technical Viability | O & M Cost | Ease of Testing
Proof of Concept | Construction Timing | Comments | Total Score for all
Alternatives - No
Weighting | Construction Cost
(Added to top 5
scored alternatives
only) | - Top 5 Total Scores Witt
Construction Cost
Added and Weighting
Factors Applied | | | | | | | Alterna | atives Th | at Allow O | bservabl | e Passage | Route | | • | • | | | Aerate Free Jet to Provide Observable
Passage Route Downstream of Orifice | 1 | Add Compressed Air to Orifice Tube | 13" | 3 | 3 | 3 | 2 | 0 | 3 | 3 | Ability to provide and maintain necessary air would be
impractical due to space requirements, O&M costs & risk of
compressor outage | 17 | 1 | 31.5 | | | 2 | Vent Orifice Tube Using Existing Light Tube
Ports | 13" | 2 | 2 | 3 | 2 | 3 | 3 | 3 | Not likely enough air could be pulled in through light tubes based on field tests | 18 | 3 | 31 | | | 3 | Re-Core Orifice Tube to Larger Size | 13" | 3 | 4 | 3 | 3 | 3 | 3 | 1 | Larger orifice ring size with larger diameter tube preferred by several members of FFDRWG - more similar to original design ring to tube diameter ratio and less potential for debris blockage | 20 | 0 | 35 | | Aerate Free Jet to Provide Observable
Passage Route Downstream of Orifice
+ Add More Opportunity for Exposure
With Additional Orifices | 4 | Reduce Orifice Ring Size <= 12" & Open
Additional Orifices as Needed | <= 12" | 3 | 3 | 2 | 4 | 2 | 3 | 3 | Possibly more debris blockage; Concern with increased adult fallback injury with smaller orifice rings | 20 | 2 | 34.5 | | | 5 | Increase Capacity of DSM, Reduce Orifice Ring
Size <= 12" & Open Additional Orifices as
Needed and/or Add Gates/Rings to Additional
S. Entrances | <= 12" | 3 | 3 | 2 | 3 | 2 | 3 | 3 | Possibly more debris blockage; Concern with increased adult fallback injury with smaller orifice rings | 19 | 2 | 33.5 | | Provide Observable Passage Route
Upstream of Orifice | 6 | Cameras in Gatewell for Visual Inspection
Upstream In Conjunction With Alt. # 9 | 13" | 4 | 3 | 3 | 1 | 1 | 3 | 2 | Large O&M cost and interference with existing fish operations, therefore not included in top 5 | 17 | x | х | | | 7 | Pressure Transducers Across Orifice
Openings In Conjunction With Alt. #9 | 13" | 3 | 3 | 3 | 1 | 1 | 2 | 2 | Interest in full flow option, but concern with debris jamming inside and whether debris blockage at entrance could be "seen" | 15 | x | х | | | 8 | Sonic/Acoustic Sensors Across Orifice
Openings in Conjunction With Alt. # 10 | 13" | 3 | 2 | 3 | 1 | 1 | 2 | 2 | Would require full pipe/tube flow in conjunction with Alt #10 | 14 | x | х | | | | | Α | Iternative | s That Re | duce jet | Impingem | ent in Co | njunction | With Alterr | natives 6-8 | | | | | Reduce Jet Impingement in
Conjunction With Alts #6-7 | 9 | Tube Insert in Bottom to Support Bottom of
Jet to the full length of Tube | - | x | x | x | x | x | x | x | As Alts 6-8 have lowest Ratings - These add-on alternatives are not ranked. | x | ž. | × | | Reduce Jet Impingement in
Conjunction With Alt. #8 | 10 | Rounded Entrance Tube Insert Flowing Full in conjunction w/ Alt. #8 only | - | x | x | x | x | × | x | x | As Alt #8 has lowest Rating - This add-on alternative is not ranked. Interest in full flow option, but concern with debris jamming inside and whether a debris blockage at entrance could be "seen" | x | × | × | | | | | | Alt | ternatives | That will | be Includ | ed With a | ny Chose | n Alternati | v e | | | | | Reduce Potential for Jet Impingement in Conjunction With Chosen Alternative | 11 | Reduce Effective Orifice Tube Length by
Removing Wall Concrete at Exit For -17 N.
Orifices in Units 12-15 as well as all working S
Orifices. | | No Ranking - Assumed to be Ancillary to any Alternative. | | | | | | Field assessments indicate existing orifice exits with this installation provide better jet hydraulics in S. Orifices especially for low TW. Assumed repositioning existing gates would be extension of current as built design and ancillary to chosen alternative. | x | x | x | | | Increase Fish Attraction in Conjunction
With Chosen Alternative | 12 | Replace Orifice Rings with Light Emitting
Orifice Rings | - | | | | | | | | Testing at McNary Dam in 2010 showed high potential for attraction and deemed ancillary to chosen alternative. | x | x | х | | NOTES: | | 22 | Alternativ | es 9-10 not consid | ered viable alternat | tives as they would | only be used in con | the lowest ratings. | Criteria for Ranking:
General Scoring: | Cost Scoring: | | | | | | | X No ratings for these alternatives as they are paired with alternatives 6 - 8 which were ranked low. | | | | | | | | | high = 0 | | | | | | | | | Top 6 Scores for 7 rating categories (no weighting or construction cost) | | | | | | | | Poor = 1
Fair = 2 | Medium-High = 1 Medium = 2 | | | | | | | Of the Top 6 Scores: Top 3 Scores for 8 rating categories and weighting (added construction cost) Ancillary features to be included in chosen alternative | | | | | | | | Fair = 2
Good = 3 | Medium = 2
Low-Medium = 3 | | | | | | Concorn with injury | + | | | | | | | Excellent = 4 | Low-Medium = 3 | | | | | | | Connerts from FFDRWG, 17 August 2011 | | | | | | | | | LACEROID - 4 | Low = 4 |] | |